一、定义
通过对原始数据进行变换把数据映射到(默认为[0,1])之间
二、公式
三、API
sklearn. preprocessing .MinMaxScaler (feature_range=(0, 1)…)
o MinMaxScalar .fit_ transform(X)
X: numpy array格式的数据[n_ samples, n_ features]
返回值:转换后的形状相同的array
四、代码实例
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
| from sklearn.preprocessing import MinMaxScaler import jieba import pandas as pd
def minmax_demo(): data = pd.read_csv("dating.txt") data = data.iloc[:,:3] print("data:\n",data) transfer = MinMaxScaler(feature_range=[0,1]) data_new = transfer.fit_transform(data) print("data_new:\n",data_new) return None
|
五、运行结果
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
| data: milage Liters Consumtime 0 40920 8.326976 0.953952 1 14488 7.153469 1.673904 2 26052 1.441871 0.895124 3 75136 13.147394 0.428964 4 38344 1.669788 0.134296 5 72993 18.141748 1.932955 6 35948 6.838792 1.213192 7 42666 13.276369 0.543888 8 67497 8.631577 0.749278 9 35483 12.273169 1.508953 10 50242 3.723498 0.831917 11 63275 8.385879 1.669485 12 5569 4.875435 0.728658 13 51052 4.688098 0.625224 14 77372 15.299570 0.331351 15 43673 1.889461 0.191283 16 61364 7.516754 1.269164 17 69673 14.239195 0.261333 18 15669 0.000000 1.259185 19 28488 10.528555 1.304844 20 6487 3.549265 0.822483 21 37708 2.991551 0.833920 22 22620 5.297865 0.638306 23 28782 6.593803 0.187108 24 19739 2.816760 1.686209 25 36788 12.458258 0.649617 26 5741 0.000000 1.656418 27 28567 9.968648 0.731232 28 6808 1.364838 0.640103 data_new: [[0.49233319 0.45899524 0.45570394] [0.12421487 0.3943098 0.85597548] [0.28526663 0.07947806 0.42299736] [0.96885924 0.72470382 0.1638265 ] [0.45645725 0.09204119 0. ] [0.93901369 1. 1. ] [0.42308817 0.37696434 0.59983354] [0.51664972 0.73181311 0.22772076] [0.86247093 0.4757853 0.34191139] [0.41661212 0.67651524 0.76426771] [0.62216063 0.20524472 0.38785618] [0.80367116 0.46224206 0.85351865] [0. 0.26874119 0.33044729] [0.6334415 0.2584149 0.27294112] [1. 0.84333494 0.10955662] [0.53067421 0.10414989 0.03168305] [0.77705667 0.41433461 0.63095228] [0.89277607 0.7848855 0.07062873] [0.14066265 0. 0.62540426] [0.31919279 0.58034953 0.65078928] [0.01278498 0.19564074 0.38261116] [0.44759968 0.16489872 0.38896978] [0.23746919 0.29202616 0.28021432] [0.32328733 0.36346018 0.02936187] [0.19734551 0.15526398 0.86281669] [0.43478685 0.68671762 0.28650289] [0.00239544 0. 0.84625379] [0.32029302 0.54948663 0.33187836] [0.01725555 0.07523189 0.28121339]]
|
六、总结
最大值最小值是变化的,最大值与最小值非常容易受异常点影响
所以这种方法鲁棒性较差,只适合传统精确小数据场景